
Finding and Tracking Peoplefr om the Bottom Up

DevaRamananandD. A. Forsyth
ComputerScienceDivision

Universityof California,Berkeley
Berkeley, CA 94720

ramanan@cs.berkeley.edu,daf@cs.berkeley.edu

Abstract

We describea tracker that can track moving peoplein
long sequenceswithoutmanualinitialization. Moving peo-
ple are modeledwith theassumptionthat,while con�gura-
tion can vary quite substantiallyfrom frameto frame, ap-
pearancedoesnot. This leadsto an algorithm that �r stly
builds a modelof theappearanceof thebodyof each indi-
vidualbyclusteringcandidatebodysegments,andthenuses
this modelto �nd all individualsin each frame. Unusually,
thetracker doesnot rely on a modelof humandynamicsto
identify possibleinstancesof people;such modelsare un-
reliable, becausehumanmotionis fastandlarge accelera-
tionsare common.We showour tracking algorithmcanbe
interpretedasa loopyinferenceprocedureonanunderlying
Bayesnet.Experimentsonvideoof realscenesdemonstrate
that this tracker can(a) countdistinctindividuals;(b) iden-
tify andtrack them;(c) recover whenit losestrack, for ex-
ample, if individualsareoccludedor brie�y leavetheview;
(d) identify thecon�guration of thebodylargely correctly;
and(e) is notdependentonparticular modelsof humanmo-
tion.

1. Intr oduction

A practicalpersontracker should: track accuratelyfor
long sequences;self-start;trackindependentof activity; be
robust to drift; track multiple people; track throughbrief
occlusions;andbecomputationallyef�cient. It shouldalso
avoid backgroundsubtraction;wewantto trackpeoplewho
happento standstill onbackgroundsthathappento move.

The literatureon humantrackingis too large to review
in detail. Trackingpeopleis dif�cult, becausepeoplecan
moveveryfast.Onecanusethecon�gurationin thecurrent
frameanda dynamicmodel to predict the next con�gura-
tion; thesepredictionscanthenbere�ned usingimagedata
(see,for example,[9, 13, 3]). Particle �ltering usesmulti-
plepredictions— obtainedby runningsamplesof theprior

througha modelof the dynamics— which arere�ned by
comparingthemwith the local imagedata(the likelihood)
(see,for example[14, 3]). Theprior is typically quitedif-
fuse(becausemotioncanbefast)but thelikelihoodfunction
maybeverypeaky, containingmultiplelocalmaximawhich
arehard to accountfor in detail. For example,if an arm
swingspastan“arm-like” pole,thecorrectlocal maximum
mustbe found to prevent the track from drifting. Anneal-
ing theparticle�lter is oneway to attackthis dif�culty [6].
An alternative is to applya strongmodelof dynamics[14],
at the considerablecost of needingto choosethe motion
modelbeforeonecandetector trackpeople.An attractive
alternative is to ignore dynamicsand �nd peoplein each
frameindependently, usingsuchcuesaslocal motion [15]
or appearance[11].

As far aswe know, no currentpersontracker meetsall
our criteria. This is mostlikely becauseof dif�culties with
dataassociation[2]; only a smallpartof theabundantim-
agedatacontainsany informationaboutthepersonandone
may needto determinewhich part this is. Particle �lters
do dataassociationonly implicitly which explainstheir at-
traction. Onemayusea varietyof templatesencodingthe
appearanceof the personbeingtracked (e.g.[12, 16]). To
date,thesetemplateshavebeenlearnedin advanceof track-
ing, andsocannotusepropertieslike thecolor of clothing,
whichchangefrom instanceto instance.

Peopletendnot to change“appearance”(color andtex-
ture of clothing, etc.) from frameto frame. We describe
a peopletracker which builds modelsof the peopleto be
trackedfrom thevideosequenceandthentracksthem.This
hasconsiderableadvantages:First,knowing theappearance
modelof eachbody part greatlyconstrainsour searchand
sosimpli�es dataassociation.Second,wecanpreventdrift,
recover from occlusionrelatively easily, andcountindivid-
uals.We show examplesthatsuggestour tracker meetsour
criteria.
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Figure 1. Description of algorithm for a tor so­arm person model for 3 frames. We search for can­
didates in (a), enforce constant appearance by clustering the patc hes in (b). By connecting good
cluster s with valid kinematics, we learn the appearance of the tor so and arm, whic h we use to �nd
new candidates in (c).

2 Algorithm

2.1 Generalapproach

We modela 2D view of thehumanbodyasa puppetof
colored,texturedrectangles[7], suchasthosein Fig.7. We
usethe9 segmenttreemodelof [10], consistingof thetorso
plustheleft/right upper/lower arms/legs(Fig.2-c).We look
for candidatebody segmentsin eachframeof a sequence
andgroupthemto form asequenceof likely puppetcon�g-
urations.

Ourfundamentalassumptionis thatcoherencein appear-
anceis a strongercueto bodycon�guration thandynamics
becausebodysegmentsmaymoveveryfastbut it takestime
to changeclothes.This suggeststhefollowing 2 partstrat-
egy. We �rst learn theappearanceof eachrectanglein our
puppet,andthen�nd likely puppetcon�gurationsin each
framewhich link upover time.

We learn an appearancefor eachbody segmentin our
puppetmodelby thefollowing:
Detectcandidatebodysegmentswith detuneddetectors.
Cluster the resultingimagepatchesassociatedwith each
candidateto identify segmentsthatlook similarover time.
Prune clusterswhosemembershave unlikely dynamics.

2.2 Learning appearance

Wemodelsegmentsascylindersandgeneratecandidates
by convolving eachframewith a templatethat respondsto
parallel lines of contrast(at a variety of orientationsand
scales),suppressingthe non-maximumresponses.We ex-
pect our local detectorsto suffer from falsepositives and
misseddetections,suchasthoseshown in Fig.1-(a).

We createa featurevector for eachcandidatesegment
capturingits appearance;we usea normalizedcolor his-
togram(in Lab space)of the associatedimagepatch. We
representthehistogramwith projectionsonto theL, a, and
b axis,using10 bins for eachprojection.We couldextend

our 30 dimensionalfeaturevectorby incorporatingfurther
cuessuchasimagetexture,but thisappearsunnecessaryfor
clustering.

We learnappearanceby clusteringthecandidatefeature
vectorsfor eachbody segment,as in Fig.1. Sincewe do
notknow thenumberof peoplein oursequencea priori (or
for that matter, the numberof segment-like objectsin the
background),typical parametricmethodssuchask-means
or gaussianmixturemodelsprove dif�cult.

Weoptedfor amodi�ed mean-shiftprocedure[4], anon-
parametricdensityestimationtechnique.We interpretour
candidatesegmentsaspointslying in a30dimensionalfea-
ture space.We �nd the meanpositionof all pointswithin
a hypersphere,recenterthe hyperspherearoundthe new
mean,and repeatuntil convergence. When encountering
multiple pointsfrom thesameframe,we only usethepoint
closestto the currenthyperspherecenterto calculatethe
new mean. We initialize this procedureat eachoriginal
featurepoint, anddenoteall pointswhich converge to the
samepositionasbelongingto the samecluster. We prune
thoseclusterswhosemembersviolateourbounded-velocity
motionmodelor whichstaycompletelystill (Fig.1-(b)),ar-
guingthatbothbehaviors arenotbodysegment-like.

The claim that we shouldonly concernourselves with
segmentsthatarecoherentover time andthatmove (a no-
tion wecall foregroundenhancement) is markedlydifferent
from traditionalbackgroundsubtractionsinceit is usedto
learnappearanceandnot to �nd people.Oncetheappear-
anceis known, wecantrackpeoplewhostandstill (solong
asthey move atsomepoint).

2.3 Finding (multiple) peopleusingappearance

We connectup the remainingclusterswhich bestobey
our kinematicconstraintsto learn the appearanceof each
bodysegment.If morethanonetorsoandarmclusterlinked
up in Fig.1-(b),we couldhave learnedmultiple appearance
modelsfor differentpeople.Hencetrackingmultiplepeople
followsnaturallyfrom ouralgorithm.



We canusethe learnedappearanceto build betterseg-
mentdetectors;we now know the arm is a brown rectan-
gle, ratherthanjust two paralleledges.We searchfor new
candidatesusingthemedoidimagepatchof thevalid clus-
tersfrom Fig.1-(b)asa template.We link up thosecandi-
dateswhichobey ourvelocityconstraintsinto the�nal track
in Fig.1-(c). We currently make the simplifying assump-
tion thatall peoplein a sequencehave differentappearance
templates,althoughinstancingasingleappearancetemplate
multiple timesis straightforward.

3 Probabilistic model

We now motivate our algorithm by introducing a
probabilisticgraphicalmodel. The relevantvariablesfrom
Fig.2-(a):

Cseg – Constantunderlyingappearancefeaturevector
P i

seg – Position(andorientation)of segmentin framei
I mi

seg – Collection of observed featurevectorsfor each
imagepatchin framei

I mi
seg representsastackof imagepatchesfrom eachpo-

sition in an image, indexed by the given imageposition.
Oneof thosepatchesis the true segmentpatch,while the
othersarebackground(which we omit from Fig.2-(a) for
simplicity). P i

seg canbeinterpretedasa pointerto thecor-
rectpatch,suchthat

I mi
seg(P i

seg)

is distributedas
� seg(Cseg)

In our case, the appearancemodel � seg(Cseg) is an
Epanechnikov (triangle) kernel centeredat Cseg . Our
graphicalmodel explicitly makes obvious the data asso-
ciation issueat hand; sincewe do not observe P i

seg , we
do not know where in the image to look for a segment,
andhencemustconsiderall the possibleimagepatchesin
I mi

seg . In turn,we seethatinferenceis complicatedby the
fact that P i

seg variablesfrom acrossframesaredependent
oneachother;oursegmentsmustmovewith aspeci�c mo-
tion model. Sincewe would like to track peopleperform-
ing a varietyof activities, we limit ourselvesto a bounded-
velocitymotionmodel.

We cansimplify our modelby turningto theundirected
casein Fig.2-b. Note that since we observe I m i

seg , we
only usea 2-dimensionalslice of the 3-dimensional“ta-
ble” Pr( I m i

seg jP i
seg ; C i

seg). Hencethe imageobservations
specifya potentialbetweenP i

seg andCseg (this is thestan-
dardmoralizationthatresultsfrom conversionof adirected
graphicalmodel to an undirectedone). Note that both
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Figure 2. Graphical model. The model in (a)
encodes the fact that each image instance of a
segment has the same appearance (encoded
in Cseg), but appear s in diff erent places. In (b),
the undirected form of the model. A complete
person model (c) contains additional kine­
matic dependencies. We sho w the full imag­
ing model for a limited tor so and arm subset
in (d).

our appearancemodel� seg(Cseg) andour imageobserva-
tionsI m i

seg arenow implicitly representedin thepotentials
 i (Cseg ; P i

seg), while our motionmodellivesin thepoten-
tial  l ink (P i

seg ; P i � 1
seg ).

Our modelbecomesmorecomplicatedfor the full hu-
manbody, consistingof 9 segmentswith additionalkine-
matic constraintsbetweenthem (Fig.2-c). Although [10]
learnsthesepotentialsfrom trainingdata,weconstructthem
by handassuminga fully deformableconnectedkinematic
model. We show the full model for a two-segment(torso
andarm)subsetin Fig.2-d.

Local segmentdetectors�t into our modelasan addi-
tionalpotential seg(Cseg); wefavor rectanglesin ourpup-
pet with a speci�c edgepro�le (we might alsofavor rect-
angleswith skin-coloredpixels). Henceour initial segment
detectionstepprunesaway thoseimagepatcheswith a low
 seg potential.

Notethatmostpeopletrackersmodeltheappearanceas
changingover time by replacingthe constantCseg with a



temporallyvarying copy, C i
seg , in eachframe plate. Al-

thoughthis alternative modelis fully Markovian andmight
appearto make inferencesimpler, theconstantappearance
assumptionproves key for dataassociation. We quickly
pruneaway thosepartsof theimagewhich do not look like
ourunderlyingappearancemodel.

3.1 Tracking asinference

Finding an optimal track given a video sequencenow
correspondsto �nding the maximuma posteriori (MAP)
estimateof both the Cseg and P i

seg nodesfrom Fig.2-d.
Exactinferenceis dif�cult for two reasons;one,thegraph
containslarge inducedcliquesandtwo, thedomainsof the
nodesare typically large (they are discretizedversionsof
underlyingcontinuousquantities).

If our model was a tree, we could �nd the MAP esti-
mateby dynamicprogramming,alsoknown asmaxproduct
belief propagation (BP). This is in fact true for any model
lacking undirectedcycles (which we will also refer to as
trees,with aslightabuseof terminology).However, wecan
still apply the updatesto nodesin a cyclic graph,pretend-
ing thatthelocalneighborhoodof eachnodeis atree.Many
researchershave foundloopy maxproductBP andits more
commonsumproductvariant to be empirically successful
[5]. In particular, �x ed pointsareguaranteedto yield so-
lutions which areoptimal within a large neighborhoodof
alternative assignments[8].

Applying theseupdatesasynchronously, wecaninterpret
this procedureasperforminginferenceon a setof embed-
dedtreeswithin themodel(similar to [17]). Thealgorithm
describedin section2 performsapproximateinferenceon
Fig.2-(d) using the treesin Fig.3. We cluster to learn a
torsoappearancein Fig.3-(a), learnan arm appearancein
(b), connectup the kinematicallyvalid clustersin (c), and
enforceourvelocityboundsin (d) to createourapproximate
MAP estimate.

3.2 Clustering asloopy inference

Althoughclusteringmaynotseemlikeinferenceontrees
(a)and(b) in Fig.3,it is anapproximateprocedureto obtain
likely valuesof Cseg . Assumemessagesare initialized to
'1'. Passingmax productmessageson trees(a) and(b) is
equivalentto �nding valuesof Cseg andP i

seg thatmaximize
 1(Cseg ; P1

seg) 2(Cseg ; P2
seg) : : :  k (Cseg ; P k

seg), where
the imageinformation is implicit in the  i 's (whencethe
subscript).

Now this correspondsto choosinga Cseg and a set of
P i

seg suchthat all the imagesegmentsidenti�ed by P i
seg

look like Cseg . If both variableswerede�ned over small,
discretedomains,all we'd be doing is dynamicprogram-
ming; for eachvalueof Cseg , we'd choosethebestP i

seg for
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Figure 3. A set of trees for loop y inf erence
on Fig.2­(d). Parts (a) and (b) correspond
to the learning and application of tor so and
arm appearance templates. Part (c) corre­
sponds to selecting an arm and tor so cluster
whic h obey our kinematic constraints. Part
(d) corresponds to the application of the mo­
tion model.

eachi , form theproduct,andthenchoosetheCseg with the
bestproduct.Thissearchis noteasyfor continuousor large
domains(e.g.[1]).

However, weknow thatwearelooking for, in essence,a
point in thedomainof Cseg suchthattherearemany image
segmentsthat look like that point. Now assumewe have
a detunedbut usablesegmentdetector. It will detectmany,
butnotall, instancesof therelevantsegmentandsomeback-
ground,too. Theinstancesof therelevantsegmentwill look
like oneanother. This meansthat,by clusteringthe repre-
sentationsof the segmentappearances,we areobtaininga
reasonableapproximationto thetruemaxmarginalof Cseg .
In particular, �nding local modesof Cseg usinga Parzen's
window estimatewith a kernel � seg is equivalent to the
mean-shiftalgorithm. In fact, usinga moresophisticated
appearancekernel � seg reducesto usinga weightedmean
in eachiterationof the mean-shiftprocedure.We possess
no formal informationon thequalityof theapproximation.

Likewise,inferring themaxmarginal of P i
seg from trees

(a) and(b) in Fig.3 canbe approximatedby queryingthe
i th imageusing the inferredappearanceCseg . Hencethe
secondphaseof our algorithmwherewe usethe inferred
appearanceto build new segmentdetectorsalsofalls from
this loopy framework.

3.3 Algorithm details

Ouralgorithminferswith asinglepassthrougheachlink
in our model,ratherthanrepeatedlypassingmessagesun-



til convergence. We experimentedwith variousorderings
of the treesin Fig.3. For example,we couldapply tree(d)
immediatelyafter inferring on trees(a) and(b). This sug-
gestsa proceduremore sophisticatedthat our initial one;
ratherthan naively pruning a clusterif it containsinvalid
dynamics,we canextract a sequenceof dynamicallyvalid
segmentsfrom it (andthenpruneit if the sequenceis too
small).This is in practicewhatwedo.

Alternatively, inferringontree(c) beforetree(b) equates
to only searchingfor candidatearmsneartheclusteredtor-
sos(i.e., we canusea truncatedversionof our kinematic
potential  k in (P i

tor ; P i
ar m ) to limit our searchspacefor

armsgiven the found torsos).We usethe following order-
ing; �rst, welearnthetorsoappearancetemplateby cluster-
ing candidatetorsos,andthenuseit to �nd a dynamically
valid torsotrack.Next wedo thesamefor lower limbsonly
searchingfor candidatesnearthefoundtorsos.Finally, we
repeatthe procedurefor upper limbs. We found this or-
dering sensiblesinceit re�ected the quality of our initial
segmentdetectors(upper limbs are hard to detect,so we
constraintheir positionby �rst detectingtorsosandlower
limbs).

Weupdateourappearancekernel� seg to re�ect theclus-
teredsegments;afterselectingthecorrectsegmentclusters
from Fig.1-(b),weset� seg to beagaussianwith thesample
meanandvarianceof thecorrespondingcluster. Weassume
the left andright limbs have the sameappearance,andas
suchonly learnasingleappearancefor both.

For longsequences,weonly clusterthe�rst K outof the
totalN frames.

4 Experimental results

Typically, a primary criterion for evaluatingthe perfor-
manceof a tracker is the numberof successive framesa
personcanbetracked. However, this is a poormeasurebe-
causepeoplemay becomeoccludedor leave the view. A
bettermeasureis whethera tracker �nds apersongivenone
is presentand doesnot �nd a persongiven one is absent
[15]. We extendthis analysisto thedetectionof individual
segments.

In Table1, we show suchresultsfor four differentse-
quences.“JumpingJacks”and“Walk” werebothtakenin-
doorswhile the subjectsweresimultaneouslymotion cap-
tured. Groundtruth for thosesequenceswasobtainedby
registeringthemotioncapturedatawith thevideo. These-
quencelengthsareN = 100and288,respectively, captured
at 15 framesper second. The appearancetemplateswere
learnedusingthe�rst K = 75and150frames.“StreetPass”
and “Weave Run” were both taken outdoors,and ground
truth washand-labeledfor a randomsubsetof frames.For
thesesequences,we clusteredthe �rst K = 200 and 150
out of thetotal of N = 380and300frames,capturedat 30

framespersecond.We de�ne a “detection” to occurwhen
theestimatedandgroundtruth segmentoverlap. Our torso
detectionratesin Table1 arequitegood,similar to thosein
[15]. However, onekey differenceis that we do not need
activity speci�c motion modelsto obtainthem. Detecting
thelimbsprovesto bemoredif�cult, especiallyin themore
challengingoutdoorsequences.We show exampleframes
from eachsequenceanddiscussadditionalresultsbelow.

Sequence
Torso Arms Legs

D FA D FA D FA
J.Jacks 94.6 0.00 87.4 0.56 91.8 0.19
Walking 99.5 0.41 84.3 0.41 68.2 1.01

StreetPass 100 0.00 66.7 0.93 42.4 3.02
Weave Run 92.9 0.00 23.3 2.89 63.0 1.92

Table 1. Tracker perf ormance on various se­
quences. Our trac ker will work on long se­
quences if our learned appearance models
are suf�cientl y general. As suc h, we measure
percenta ge detections (D) and false alarms
(FA) of segments. Our tor so rates are quite
good, while rates for limbs suff er in the chal­
lenging outdoor sequences. In general, the
appearance models learned from the data are
tight, allo wing for very little false positives.

Self-starting: None of thesetrackswere handinitial-
ized. However, we do optimizethresholdsfor thesegment
detectorsand the bandwidthfor the mean-shiftprocedure
for the sequencesshown. More sophisticatedsegmentde-
tectionandclusteringalgorithmsmayeliminatetheneedfor
tweaking.

Multiple activities: In Fig.4, we seeframesfrom the
two indoor sequences;“Jumping Jacks”and “Walk”. In
bothtop rows,we show theoriginal edge-basedcandidates
which clustertogether. Thatis, we have prunedaway those
candidatesnot in theoptimalcluster, but wehaveyet to use
thelearnedappearancetemplateto searchtheimageagain.
Notewhenlimbs arecloseto thebodyor surroundedby a
weak-contrastbackground,few candidateswerefounddue
to weak edges. In the bottom rows, we searchfor limbs
using an appearancetemplate(learnedusing surrounding
frameswhenlimbswereclearlyde�ned)andnow trackover
traditionally dif�cult kinematic con�gurations and back-
groundconditions. Note that the activities in both these
sequencesarequitedifferent;trying to tracka walking per-
sonwith ajumpingjackmotionmodel(andvice-versa)may
prove very dif�cult. However, our weakbounded-velocity
motionmodelprovedbroadenoughto trackboth.

Lack of background subtraction: In Fig.5, we exam-
ine our foregroundenhancementclaim on the`StreetPass”
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Figure 4. Self­star ting trac ker on “J umping Jacks” (left) and “Walk” (right) sequences. Recall our
algorithm has two basic phases; we learn appearance by clustering candidates, and then �nd people
using appearance . Both top rows sho w the original edge candidates whic h clustered tog ether; both
bottomrows sho w the �nal trac ks. In frames where the limbs are close to the bod y or surr ounded by
a weak­contrast backgr ound, we �nd additional segments using the learned appearance templates.

sequence,whichcontainsmultiplemoving objects.Westill
learnfairly accurateappearancemodels,althoughvarying
lighting conditionsoften result in poor matches(as in the
high misseddetectionratesfor armsandlegs in Table1).
By usinga metricmorerobust to lighting changes,theap-
pearancemodelslearnedin theclusteringandthesegments
foundmaybemoreaccurate.Alternatively, onemight add
explicit illuminationvariablesto Cseg to dealwith temporal
changesin brightness.

Multiple people, recovery fr om occlusion and error
In Fig.7,weseeframesfrom the“WeaveRun” sequence,in
which three�gures arerunningin a weave fashion. In the
top row, we seetwo trackscrossing.Whenthetwo �gures
lie on top of eachother, we correctlydisambiguatewho is
in front, and furthermore,recover the interruptedtrack of
theoccluded�gure. In thebottomrow, a track�nds a false
armin thebackgroundbut laterrecovers.Wealsoseeanew
trackbeingborn, increasingthecountof trackedpeopleto
three.

4.1 Discussion

Ouralgorithm(1) learnssegmentappearancesbycluster-
ing, (2) �nds assembliesin eachframeusingtheappearance
and�nally (3) links upthetemporallyconsistentassemblies
into a track.

More generally, this approachreducestracking to the
problemof inferenceon a dynamicBayesnet. Otherap-
proximateinferencealgorithmsmay yet prove more suc-
cessful.However, ourapproximationsexploit thecloselink

betweentracking and learningappearance.Note we are
able to learn appearancedue to the underlyingconstancy
of segmentimagepatches;other featurescommonlyused
for trackingsuchasedges[11] or motion vectors[15] do
not exhibit this phenomenon.Similarly, we canextendour
framework to other featuresthat might be constantover
time,suchastexture.

How many framesdoesoneneedto clusterto obtaina
working appearancemodel? Certainly with more frames
wewouldexpectbetterlocalizationof segments(by having
a lower varianceestimateof appearance),but the question
of the numberof framesneededto detectthe correctseg-
mentsis ratherinteresting.We evaluateappearancemodel
performanceversusthenumberof K framesusedfor learn-
ing in Fig.6 for the“Walk” sequence.We alsoshow results
for modelslearnedwith local detectorsaugmentedwith a
skinclassi�er.

Sincewe areusingthe �rst K framesto build a model
which we hopewill generalizefor the entireN framese-
quence,we alsouseFig.6 to examinethe generalizability
of our modelasa function of K . We plot performanceof
thelearnedappearancetemplateson thethe�rst K training
framesin (a) and(b), while we look at theperformanceon
the entireN framesequencein (c) and(d). Note that the
performanceis virtually identicalfor eithermeasure.This
suggeststhatour modelof stationaryappearanceis indeed
appropriate;afterthe�rst 60 frames,we prettymuchknow
thesegmentappearancesin thenext 222. Becausewe have
learnedaccurateappearancemodels,we shouldbe ableto
trackfor arbitrarily long.
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Figure 5. Self­star ting trac ker on “Street Pass” sequence containing multiple moving objects. Both
rows are select frames from the �nal trac k. The learned appearance templates are also sho wn on the
right. We denote individual trac ks by a token displa yed above the �gure . The trac ker successfull y
learns the correct number of appearance models, and does not mistake the moving car for a new
person. We are also able to reco ver from par tial and complete occ lusion, as well as from errors in
con�guration (whic h Markovian state models would typicall y fail on).

Let us now considerhow the quality of the low-level
segmentdetectorsaffectsthelearnedappearancetemplates.
Both detectorsin Fig.6 happento perform well for small
K sinceour subjectis initially againsta unclutteredback-
ground. As we increaseK and our subjectwalks into
the room, our edge detectorspick up extraneousback-
groundcandidateswhichclusterinto poorappearancemod-
els. However, both performwell asK is increasedsuf�-
ciently. This resultsuggeststhat high-level clusteringcan
compensatefor poor low-level detection,given we cluster
over enoughframes.
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(a) (b) (c) (d)

Figure 6. Appearance model perf ormance for “Walk” sequence . We plot perf ormance for models
constructed with edge and edge+skin based detector s for varying K frames. In (a) and (b) we consider
the perf ormance of the models on the K training frames. In (c) and (d) we look at perf ormance on
the entire sequence . Our models perf orm similarl y on both the training and test frames, so they
seem to generaliz e well. For small K , both detector s for tuitousl y learn a good model due to a lack of
backgr ound clutter . As K increases, backgr ound clutter leads our edge detector s to construct poor
appearance models. For large K , clustering yields working models irrespective of the detector s.

Recovery from error
Track error

Correct track occluded

Birth of new track

Recovery from occlusion

Figure 7. Self­star ting trac ker on ”Weave Run”. We sho w a subset of frames illustrating one �gure
passing another , with the learned appearance templates belo w. Note the correct �gure is occ luded,
and fur thermore the trac k is reco vered once it reappear s. An earlier incorrect arm estimate is also
�x ed (this would prove dif�cult assuming a drifting appearance model). Finall y, we sho w a new trac k
being born, increasing the count of found people to three .


