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Abstract

We describea tradker that can track moving peoplein
long sequencewithoutmanualinitialization. Moving peo-
ple are modeledwith the assumptiorthat, while con gura-
tion can vary quite substantiallyfrom frameto frame ap-
peatancedoesnot. Thisleadsto an algorithmthat r stly
builds a modelof the appeaanceof the bodyof eadh indi-
vidualby clusteringcandidatebodysegmentsandthenuses
thismodelto nd all individualsin ead frame Unusually
thetracker doesnot rely on a modelof humandynamicgo
identify possibleinstancesf people; sudh modelsare un-
reliable becausdhumanmotionis fastandlarge accelea-
tions are common.We showour tracking algorithm canbe
interpretedasa loopyinferenceprocedue onanunderlying
Bayeset. Experiment®nvideoof real scenesiemonstate
thatthistradker can(a) countdistinctindividuals; (b) iden-
tify andtradk them; (c) recover whenit losestrad, for ex-
ample if individualsare occludedor brie y leavetheview;
(d) identify the con guration of the bodylargely correctly;
and(e)is notdependentn particular modelof humanmo-
tion.

1. Intr oduction

A practical persontracker should: track accuratelyfor
long sequencesself-startjtrackindependenof actity; be
robust to drift; track multiple people;track through brief
occlusionsandbe computationallyef cient. It shouldalso
avoid backgroundsubtractionwe wantto trackpeoplewho
happerto standstill on backgroundshathapperto move.

The literatureon humantrackingis too large to review
in detail. Tracking peopleis dif cult, becauseeoplecan
move veryfast.Onecanusethecon gurationin thecurrent
frame anda dynamicmodelto predictthe next con gura-
tion; thesepredictionscanthenbere ned usingimagedata
(see,for example,[9, 13, 3]). Particle Itering usesmulti-
ple predictions— obtainedby runningsamplef the prior

througha model of the dynamics— which arere ned by
comparingthemwith the local imagedata(the likelihood)
(see,for example[14, 3]). The prior is typically quite dif-

fuse(becausenotioncanbefast)butthelik elihoodfunction
maybeverypealy, containingmultiplelocalmaximawhich
are hardto accountfor in detail. For example,if anarm
swingspastan“arm-like” pole,the correctlocal maximum
mustbe foundto preventthe track from drifting. Anneal-
ing the particle Iter is oneway to attackthis dif culty [6].

An alternatve is to apply a strongmodelof dynamicg14],

at the considerablecost of needingto choosethe motion
modelbeforeonecandetector track people.An attractve
alternatve is to ignore dynamicsand nd peoplein each
frameindependentlyusingsuchcuesaslocal motion[15]

or appearancfll].

As far aswe know, no currentpersontracker meetsall
our criteria. Thisis mostlikely becausef dif culties with
dataassociation2]; only a smallpartof the abundantim-
agedatacontainsary informationaboutthe personandone
may needto determinewhich part this is. Particle Iters
do dataassociatioronly implicitly which explainstheir at-
traction. Onemay usea variety of templatesencodingthe
appearancef the personbeingtracked (e.g.[12, 16]). To
date thesetemplateshave beenlearnedn advanceof track-
ing, andso cannotusepropertiedik e the color of clothing,
which changegrom instanceo instance.

Peopletendnot to change‘appearance’(color andtex-
ture of clothing, etc.) from frameto frame. We describe
a peopletracker which builds modelsof the peopleto be
trackedfrom thevideosequencandthentracksthem.This
hasconsiderabladwantagesFirst, knowing theappearance
model of eachbody part greatly constrainsour searchand
sosimpli es dataassociationSecondwe canpreventdrift,
recover from occlusionrelatively easily andcountindivid-
uals. We shav examplesthatsuggesbur tracker meetsour
criteria.
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2 Algorithm
2.1 Generalapproach

We modela 2D view of the humanbody asa puppetof
colored,texturedrectangleg7], suchasthosein Fig.7. We
usethe 9 sggmenttreemodelof [10], consistingof thetorso
plustheleft/right upper/laver arms/lgs (Fig.2-c). We look
for candidatebody segmentsin eachframe of a sequence
andgroupthemto form a sequencef likely puppetcon g-
urations.

Ourfundamentahssumptioris thatcoherencén appear
anceis a strongercueto body con guration thandynamics
becausdodysegmentsnaymove veryfastbut it takestime
to changeclothes. This suggestshefollowing 2 partstrat-
egy. We rst learn theappearancef eachrectanglein our
puppet,andthen nd likely puppetcon gurationsin each
framewhichlink up overtime.

We learn an appearancéor eachbody sggmentin our
puppetmodelby thefollowing:

Detectcandidatébody segmentswith detuneddetectors.
Cluster the resultingimage patchesassociatedvith each
candidateo identify segmentsthatlook similar over time.
Prune clustersvhosemembersave unlikely dynamics.

2.2 Learning appearance

We modelsggmentsascylindersandgenerateandidates
by convolving eachframewith a templatethatrespondgo
parallel lines of contrast(at a variety of orientationsand
scales) suppressinghe non-maximumresponsesWe ex-
pectour local detectorgto suffer from false positives and
misseddetectionssuchasthoseshavn in Fig.1-(a).

We createa featurevectorfor eachcandidatesegment
capturingits appearancewe usea normalizedcolor his-
togram(in Lab space)of the associatedmagepatch. We
representhe histogramwith projectionsontothel, a, and
b axis, using10 binsfor eachprojection. We could extend
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Figure 1. Description of algorithm for a torso-arm person model for 3 frames.

moves too fas

We search for can-
didates in (a), enforce constant appearance by clustering the patches in (b). By connecting good
cluster s with valid kinematics, we learn the appearance of the torso and arm, whic h we use to nd
new candidates in (c).

our 30 dimensionafeaturevectorby incorporatingfurther
cuessuchasimagetexture,but thisappearsinnecessarfor
clustering.

We learnappearancby clusteringthe candidatdeature
vectorsfor eachbody sgment,asin Fig.1. Sincewe do
notknow the numberof peoplein our sequence priori (or
for that matter the numberof sggment-like objectsin the
background)typical parametriomethodssuchask-means
or gaussiammixture modelsprove dif cult.

We optedfor amodi ed mean-shifprocedurd4], anon-
parametricdensityestimationtechnique. We interpretour
candidatesegmentsaspointslying in a 30 dimensionafea-
ture space.We nd the meanpositionof all pointswithin
a hypersphererecenterthe hyperspherearoundthe new
mean,and repeatuntil corvergence. When encountering
multiple pointsfrom the sameframe,we only usethe point
closestto the currenthyperspherecenterto calculatethe
new mean. We initialize this procedureat eachoriginal
featurepoint, and denoteall pointswhich corverge to the
samepositionasbelongingto the samecluster We prune
thoseclusterasvhosemembersiolate ourbounded-elocity
motionmodelor which staycompletelystill (Fig.1-(b)),ar
guingthatbothbehaiors arenot body segment-like.

The claim that we shouldonly concernoursehes with
sgymentsthat are coherentover time andthat move (a no-
tion we call foregroundenhancemehis markedly different
from traditionalbackgroundsubtractionsinceit is usedto
learnappearancandnotto nd people.Oncethe appear
anceis known, we cantrack peoplewho standstill (solong
asthey move at somepoint).

2.3 Finding (multiple) peopleusing appearance

We connectup the remainingclusterswhich bestobey
our kinematicconstraintsto learnthe appearancef each
bodysegment.If morethanonetorsoandarmclusterinked
upin Fig.1-(b),we could have learnedmultiple appearance
modelsfor differentpeople.Hencetrackingmultiple people
follows naturallyfrom our algorithm.



We canusethe learnedappearancéo build bettersey-
mentdetectorsiwe now know the armis a brown rectan-
gle, ratherthanjust two paralleledges.We searchfor new
candidatesisingthe medoidimagepatchof thevalid clus-
tersfrom Fig.1-(b) asa template.We link up thosecandi-
dateswvhichobey ourvelocity constraintsnto the nal track
in Fig.1-(c). We currently make the simplifying assump-
tion thatall peoplein asequencéave differentappearance
templatesalthoughinstancingasingleappearanceemplate
multiple timesis straightforvard.

3 Probabilistic model

We now motivate our algorithm by introducing a
probabilisticgraphicalmodel. The relevant variablesfrom
Fig.2-(a):

Cseg — Constanunderlyingappearancéeaturevector
P¢eq — Position(andorientation)of segmentin framei

I miseg — Collection of obsered featurevectorsfor each

imagepatchin framei

I miseg representa stackof imagepatchegrom eachpo-
sition in an image, indexed by the given image position.
One of thosepatchesds the true segmentpatch, while the
othersare backgroundwhich we omit from Fig.2-(a) for
simplicity). Psieg canbeinterpretedasa pointerto the cor

rectpatch,suchthat
| Mseq(Pseg)

is distributedas
seg (Cseg )

In our case, the appearancemodel geg(Cseg) iS an
Epanechnikv (triangle) kernel centeredat Cseq.  Our
graphicalmodel explicitly malkes obvious the data asso-
ciation issueat hand; sincewe do not obsere Pgeg, we
do not know wherein the imageto look for a segment,
andhencemustconsiderall the possibleimagepatchesn

I m‘seg. In turn, we seethatinferenceis complicatedoy the
fact that Psieg variablesfrom acrossframesare dependent
on eachother;our sgmentsmustmove with aspeci ¢ mo-
tion model. Sincewe would like to track peopleperform-
ing a variety of actvities, we limit oursehesto abounded-
velocity motionmodel.

We cansimplify our modelby turningto the undirected
casein Fig.2-b Note that since we obsere | m‘seg, we
only usea 2-dimensionalslice of the 3-dimensional‘ta-
ble” Pr(1 mig,jPleq; Cieq)- Hencetheimageobserations
specifya potentialbetweerPS‘eg andCseq (thisis the stan-
dardmoralizationthatresultsfrom conversionof a directed
graphicalmodel to an undirectedone). Note that both
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Figure 2. Graphical model. The model in (a)
encodes the fact that each image instance of a
segment has the same appearance (encoded
in Cseg), but appears in diff erent places. In (b),
the undirected form of the model. A complete
person model (c) contains additional kine-
matic dependencies. We show the full imag-
ing model for a limited torso and arm subset
in (d).

our appearancenodel geq(Cseg) andourimageobsera-
tionsl m‘Seg arenow implicitly representeth thepotentials

i (Cseg; Pgeg), while our motionmodellivesin the poten-
tial link (Psleg; Pslegl .

Our model becomesmore complicatedfor the full hu-
man body, consistingof 9 segmentswith additionalkine-
matic constraintsbetweenthem (Fig.2-c). Although [10]
learnghesepotentialfrom trainingdata we constructhem
by handassuminga fully deformableconnectedkinematic
model. We shaw the full modelfor a two-segment(torso
andarm)subsein Fig.2-d.

Local sggmentdetectorst into our modelas an addi-
tional potential seg(Cseq); We favor rectanglesn our pup-
petwith a speci ¢ edgepro le (we might alsofavor rect-
angleswith skin-coloredpixels). Henceour initial sggment
detectionstepprunesaway thoseimagepatcheswith alow

seg potential.

Note thatmostpeopletrackersmodelthe appearancas
changingover time by replacingthe constantCseq With a



temporally varying copy, Ciseg, in eachframe plate. Al-
thoughthis alternatve modelis fully Markovian andmight
appearto make inferencesimpler the constantappearance
assumptionproves key for dataassociation. We quickly
pruneaway thosepartsof theimagewhich do notlook like
our underlyingappearancenodel.

3.1 Tracking asinference

Finding an optimal track given a video sequencenow
correspondgo nding the maximuma posteriori (MAP)
estimateof both the Cseg and Pgeg nodesfrom Fig.2-d.
Exactinferenceis dif cult for two reasonspne,the graph
containslarge inducedcliqguesandtwo, the domainsof the
nodesare typically large (they are discretizedversionsof
underlyingcontinuousjuantities).

If our modelwas a tree, we could nd the MAP esti-
mateby dynamicprogrammingalsoknown asmaxproduct
belief propagtion (BP). This is in facttrue for any model
lacking undirectedcycles (which we will alsoreferto as
treeswith aslightabuseof terminology).However, we can
still apply the updateso nodesin a cyclic graph,pretend-
ing thatthelocal neighborhooaf eachnodeis atree.Many
researcherbave foundloopy maxproductBP andits more
commonsum productvariantto be empirically successful
[5]. In particular x ed pointsare guaranteedo yield so-
lutions which are optimal within a large neighborhoodf
alternatve assignmentgs].

Applying theseupdatessynchronousl|ye caninterpret
this procedureas performinginferenceon a setof embed-
dedtreeswithin the model(similarto [17]). Thealgorithm
describedn section2 performsapproximatenferenceon
Fig.2-(d) using the treesin Fig.3. We clusterto learna
torso appearancén Fig.3-(a),learnan arm appearancén
(b), connectup the kinematicallyvalid clustersin (c), and
enforceourvelocityboundsn (d) to createourapproximate
MAP estimate.

3.2 Clustering asloopy inference

Althoughclusteringmaynotseenlik einferenceontrees
(a)and(b) in Fig.3,it is anapproximaterocedureo obtain
likely valuesof Cseq. Assumemessageareinitialized to
'"1'. Passingmax productmessagesn trees(a) and (b) is
equivalentto nding valuesof Cgegq andPgieg thatmaximize

1(Cseg; Psleg) Z(Cseg; Pszeg) el k(Cseg; Pskeg)! where
the imageinformationis implicit in the ;'s (whencethe
subscript).

Now this correspondgo choosinga Cseq and a setof
Pleg Suchthatall the image segmentsidenti ed by Pl
look like Cseq. If bothvariableswere de ned over small,
discretedomains,all we'd be doing is dynamicprogram-
ming; for eachvalueof Cseq, we'd choosehe bestPS‘eg for
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Figure 3. A set of trees for loopy inference
on Fig.2-(d). Parts (a) and (b) correspond
to the learning and application of torso and
arm appearance templates. Part (c) corre-
sponds to selecting an arm and torso cluster
whic h obey our kinematic constraints. Part
(d) corresponds to the application of the mo-
tion model.

eachi, form the product,andthenchoosehe Cseg with the
bestproduct.This searchs noteasyfor continuousor large
domaing(e.g.[1]).

However, we know thatwe arelooking for, in essencea
pointin thedomainof Csey suchthattherearemary image
segmentsthat look like that point. Now assumewe have
adetunedbut usablesegmentdetector It will detectmary,
but notall, instance®f therelevantsggmentandsomeback-
groundtoo. Theinstance®f therelevantsegmentwill look
like oneanother This meanghat, by clusteringthe repre-
sentationf the sggmentappearancesye are obtaininga
reasonablapproximatiorto thetruemaxmaiginal of Cseg.
In particular nding local modesof Cseg Usinga Parzens
window estimatewith a kernel sy is equivalentto the
mean-shiftalgorithm. In fact, using a more sophisticated
appearanc&ernel s¢y reducedo usinga weightedmean
in eachiteration of the mean-shiftprocedure.We possess
no formal informationon the quality of theapproximation.

Likewise, inferring the maxmarginal of Pgeg from trees
(a) and(b) in Fig.3 canbe approximateddy queryingthe
i™ imageusingthe inferred appearanc€seq. Hencethe
secondphaseof our algorithmwherewe usethe inferred
appearanc#o build nev segmentdetectorsalsofalls from
thisloopy framework.

3.3 Algorithm details

Ouralgorithminferswith asinglepasghrougheachlink
in our model, ratherthanrepeatedlypassingmessagesn-



til convergence. We experimentedwith variousorderings
of thetreesin Fig.3. For example,we could apply tree(d)

immediatelyafter inferring on trees(a) and (b). This sug-
gestsa proceduremore sophisticatedhat our initial one;
ratherthan naively pruninga clusterif it containsinvalid

dynamics,we canextracta sequencef dynamicallyvalid

sgmentsfrom it (andthenpruneit if the sequences too

small). Thisis in practicewhatwe do.

Alternatively, inferringontree(c) beforetree(b) equates
to only searchingor candidatearmsnearthe clusteredor-
sos(i.e., we canusea truncatedversionof our kinematic
potential in (P, ; Pl ) to limit our searchspacefor
armsgiven the found torsos). We usethe following order
ing; rst, welearnthetorsoappearanctemplateby cluster
ing candidateorsos,andthenuseit to nd adynamically
valid torsotrack. Next we do the samefor lower limbs only
searchingor candidatesiearthe foundtorsos.Finally, we
repeatthe procedurefor upperlimbs. We found this or-
dering sensiblesinceit re ected the quality of our initial
segmentdetectors(upperlimbs are hard to detect,so we
constraintheir positionby rst detectingtorsosand lower
limbs).

We updateour appearanckernel sqq tore ect theclus-
teredsegments;after selectingthe correctsegmentclusters
from Fig.1-(b),weset se4 to beagaussiawith thesample
meanandvarianceof thecorrespondingluster We assume
the left andright limbs have the sameappearanceandas
suchonly learnasingleappearancéor both.

Forlong sequencesye only clusterthe rst K outof the
totalN frames.

4 Experimental results

Typically, a primary criterion for evaluatingthe perfor
manceof a tracker is the numberof successie framesa
personcanbetracked. However, thisis a poormeasurde-
causepeoplemay becomeoccludedor leave the view. A
bettermeasurés whetheratracker nds apersorngivenone
is presentand doesnot nd a persongiven oneis absent
[15]. We extendthis analysisto the detectionof individual
segments.

In Table 1, we shav suchresultsfor four different se-
guences.'JumpingJacks’and“Walk” werebothtakenin-
doorswhile the subjectswere simultaneouslymotion cap-
tured. Groundtruth for thosesequencesvas obtainedby
registeringthe motion capturedatawith thevideo. The se-
quencdengthsareN =100and288,respectrely, captured
at 15 framesper second. The appearancéemplateswere
learnedusingthe rst K =75and150frames."StreetPass”
and “Weave Run” were both taken outdoors,and ground
truth washand-labeledor arandomsubsebf frames. For
thesesequenceswe clusteredthe rst K = 200 and 150
out of thetotal of N = 380and300 frames,capturedat 30

framesper second.We de ne a “detection”to occurwhen
the estimatedandgroundtruth sgmentoverlap. Our torso
detectiorratesin Tablel arequite good,similar to thosein

[15]. However, onekey differenceis that we do not need
activity speci ¢ motion modelsto obtainthem. Detecting
thelimbs provesto bemoredif cult, especiallyin themore
challengingoutdoorsequencesWe shav exampleframes
from eachsequencanddiscussadditionalresultsbelow.

Arms
D | FA
87.4| 0.56
84.3| 0.41
66.7 | 0.93
23.3 | 2.89

Torso
D | FA
J.Jacks | 94.6 | 0.00
Walking | 99.5| 0.41
StreetPass | 100 | 0.00
WeareRun | 92.9 | 0.00

Legs
D | FA
91.8| 0.19
68.2| 1.01
42.4 | 3.02
63.0| 1.92

Sequence

Table 1. Tracker performance on various se-
quences. Our tracker will work on long se-
quences if our learned appearance models
are suf cientl y general. As such, we measure
percentage detections (D) and false alarms
(FA) of segments. Our torso rates are quite
good, while rates for limbs suffer in the chal-
lenging outdoor sequences. In general, the
appearance models learned from the data are
tight, allowing for very little false positives.

Self-starting: None of thesetrackswere handinitial-
ized. However, we do optimizethreshold<or the sggment
detectorsand the bandwidthfor the mean-shiftprocedure
for the sequenceshavn. More sophisticatedsegmentde-
tectionandclusteringalgorithmsmayeliminatetheneedfor
tweaking.

Multiple activities: In Fig.4, we seeframesfrom the
two indoor sequences;Jumping Jacks”and “Walk”. In
bothtop rows, we shav the original edge-basedandidates
which clustertogether Thatis, we have prunedaway those
candidatesotin theoptimalcluster but we have yetto use
thelearnedappearanctemplateto searchtheimageagain.
Notewhenlimbs arecloseto the body or surroundecy a
weak-contrasbackgroundfew candidatesverefound due
to weak edges. In the bottom rows, we searchfor limbs
using an appearancéemplate(learnedusing surrounding
frameswhenlimbswereclearlyde ned) andnow trackover
traditionally dif cult kinematic con gurations and back-
ground conditions. Note that the actwities in both these
sequencearequite different;trying to trackawalking per
sonwith ajumpingjack motionmodel(andvice-versa)ynay
prove very dif cult. However, our weakbounded-elocity
motionmodelprovedbroadenoughto trackboth.

Lack of background subtraction: In Fig.5, we exam-
ine our foregroundenhancementlaim on the “StreetPass”
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Figure 4. Self-star ting tracker on “Jumping Jacks” (left) and “Walk” (right) sequences.

Recall our

algorithm has two basic phases; we learn appearance by clustering candidates, and then nd people
using appearance . Both toprows show the original edge candidates whic h clustered together; both
bottomrows show the nal tracks. In frames where the limbs are close to the body or surrounded by
a weak-contrast background, we nd additional segments using the learned appearance templates.

seguenceyhich containsmultiple moving objects.We still
learnfairly accurateappearancenodels,althoughvarying
lighting conditionsoften resultin poor matchegasin the
high misseddetectionratesfor armsandlegsin Table1).
By usinga metric morerobustto lighting changesthe ap-
pearancenodelslearnedn theclusteringandthe sgments
found may be moreaccurate Alternatively, onemight add
explicit illumination variableso Cseq to dealwith temporal
changesn brightness.

Multiple people, recovery from occlusionand error
In Fig.7,we seeframesfrom the“Weare Run” sequencdn
which three gures arerunningin a weave fashion. In the
top row, we seetwo trackscrossing.Whenthetwo gures
lie on top of eachother we correctlydisambiguatavho is
in front, and furthermore recover the interruptedtrack of
theoccludedgure. In thebottomrow, atrack nds afalse
armin thebackgroundut laterrecovers.We alsoseea new
track beingborn, increasingthe countof tracked peopleto
three.

4.1 Discussion

Ouralgorithm(1) learnssgmentappearancesy cluster
ing, (2) nds assembliet eachframeusingtheappearance
and nally (3) links upthetemporallyconsistenassemblies
into atrack.

More generally this approachreducestracking to the
problemof inferenceon a dynamicBayesnet. Otherap-
proximateinferencealgorithmsmay yet prove more suc-
cessful.However, our approximationgxploit thecloselink

betweentracking and learning appearance.Note we are
ableto learn appearancelue to the underlyingconstang
of sgmentimage patches;otherfeaturescommonlyused
for tracking suchas edges[11] or motion vectors[15] do
not exhibit this phenomenonSimilarly, we canextendour
framework to other featuresthat might be constantover
time, suchastexture.

How mary framesdoesone needto clusterto obtaina
working appearancenodel? Certainly with more frames
we would expectbetterlocalizationof segmentgby having
a lower varianceestimateof appearancelut the question
of the numberof framesneededo detectthe correctsey-
mentsis ratherinteresting. We evaluateappearancenodel
performancerersughenumberof K framesusedfor learn-
ing in Fig.6 for the“Walk” sequenceWe alsoshawv results
for modelslearnedwith local detectorsaugmentedvith a
skin classi er.

Sincewe areusingthe rst K framesto build a model
which we hopewill generalizefor the entireN frame se-
guence,we alsouseFig.6 to examinethe generalizability
of our modelasa function of K. We plot performanceof
thelearnedappearanceemplateonthethe rst K training
framesin (a) and(b), while we look at the performancen
theentireN framesequenceén (c) and(d). Notethatthe
performancas virtually identicalfor eithermeasure.This
suggestshatour modelof stationaryappearances indeed
appropriateafterthe rst 60 frameswe prettymuchknow
the sggmentappearanceis the next 222. Becauseve have
learnedaccurateappearancenodels,we shouldbe ableto
trackfor arbitrarily long.
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Recovery from error

Figure 5. Self-star ting tracker on “Street Pass” sequence containing multiple moving objects. Both
rows are select frames from the nal track. The learned appearance templates are also shown on the

right. We denote individual tracks by a token displayed above the gure

. The tracker successfull y

learns the correct number of appearance models, and does not mistake the moving car for a new
person. We are also able to recover from partial and complete occlusion, as well as from errors in

con guration

Let us now considerhow the quality of the low-level
sgmentdetectoraffectsthelearnedappearanceemplates.
Both detectorsin Fig.6 happento performwell for small
K sinceour subjectis initially againsta unclutteredback-
ground. As we increaseK and our subjectwalks into
the room, our edge detectorspick up extraneousback-
groundcandidatesvhich clusterinto poorappearancenod-
els. However, both performwell asK is increasedsuf-
ciently. This resultsuggestghat high-level clusteringcan
compensatdor poor low-level detection,given we cluster
overenoughframes.
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Figure 6. Appearance model performance for “Walk” sequence. We plot performance for models
constructed with edge and edge+skin based detector s for varying K frames. In (a) and (b) we consider
the performance of the models on the K training frames. In (c) and (d) we look at performance on
the entire sequence . Our models perform similarl y on both the training and test frames, so they
seem to generaliz e well. For small K, both detector s fortuitousl y learn a good model due to alack of
background clutter. As K increases, background clutter leads our edge detector s to construct poor
appearance models. For large K, clustering yields working models irrespective of the detector s.

Birth of new track

Figure 7. Self-star ting tracker on "Weave Run”. We show a subset of frames illustrating one gure
passing another, with the learned appearance templates below. Note the correct gure is occluded,
and furthermore the track is recovered once it reappears. An earlier incorrect arm estimate is also
x ed (this would prove dif cult assuming a drifting appearance model). Finally, we show a new track
being born, increasing the count of found people to three.



