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Abstract 
 

Clustering analysis is a descriptive task that seeks to identify homogeneous groups of objects based on 
the values of their attributes. This paper proposes a new algorithm for K-medoids clustering which 
runs like the K-means algorithm and tests several methods for selecting initial medoids. The proposed 
algorithm calculates the distance matrix once and uses it for finding new medoids at every iterative 
step. We evaluate the proposed algorithm using real and artificial data and compare with the results of 
other algorithms. The proposed algorithm takes the reduced time in computation with comparable 
performance as compared to the Partitioning Around Medoids. 
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1. Introduction 
 
Clustering is the process of grouping a set of objects into classes or clusters so that objects within a 
cluster have similarity in comparison to one another, but are dissimilar to objects in other clusters (Han 
et al 2001). K-means clustering (MacQueen, 1967) and Partitioning Around Medoids (PAM) 
(Kaufman and Rousseeuw, 1990) are well known techniques for performing non-hierarchical 
clustering.  
 

K-means clustering finds the  centroids, where the coordinate of each centroid is the means of the 

coordinates of the objects in the cluster and assigns every object to the nearest centroid. The algorithm 
can be summarized as follows. 

k

Step 1 : Select  objects randomly. These objects represent initial group centroids.  k

Step 2 : Assign each object to the group that has the closest centroid.  
Step 3 : When all objects have been assigned, recalculate the positions of the  centroids. k

Step 4 : Repeat Steps 2 and 3 until the centroids no longer move.  
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Unfortunately, K-means clustering is sensitive to the outliers and a set of objects closest to a centroid 
may be empty, in which case centroids cannot be updated. For this reason, K-medoids clustering are 
sometimes used, where representative objects called medoids are considered instead of centroids. 
Because it uses the most centrally located object in a cluster, it is less sensitive to outliers compared 
with the K-means clustering. Among many algorithms for K-medoids clustering, Partitioning Around 
Medoids (PAM) proposed by Kaufman and Rousseeuw (1990) is known to be most powerful. 
However, PAM also has a drawback that it works inefficiently for large data sets due to its complexity 
(Han et al, 2001). This is main motivation of this paper. We are interested in developing a new K-
medoids clustering method that should be fast and efficient.  

 
The remaining parts of this paper are organized as follows: The proposed method is introduced in the 
next section and performance comparison is presented with some simulation results. Other methods to 
find initial medoids are discussed and finally some conclusions are given. 
 

2. Proposed K-medoids algorithm 
 
Suppose that we have  objects having n p  variables that will be classified into ( ) clusters 
(Assume that  is given). Let us define -th variable of object  as ( ). 

The proposed algorithm is composed of the following three steps.  
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Step 1 : (Select initial medoids) 
1-1. Using Euclidean distance as a dissimilarity measure, compute the distance between every pair of 
all objects as follows:  
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1-2. Calculate  to make an initial guess at the centers of the clusters.  ijp
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1-3. Calculate  at each objects and sort them in ascending order. Select objects 

having the minimum value as initial group medoids.  
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1-4. Assign each object to the nearest medoid.  
1-5. Calculate the current optimal value, the sum of distance from all objects to their medoids.  
 
Step 2 : (Find new medoids)  
Replace the current medoid in each cluster by the object which minimizes the total distance to other 
objects in its cluster.  
 



Step 3 : (New assignment) 
3-1. Assign each object to the nearest new medoid.  
3-2. Calculate new optimal value, the sum of distance from all objects to their new medoids. If the 
optimal value is equal to the previous one, then stop the algorithm. Otherwise, go back to the Step 2.  
 
The above algorithm runs just like K-means clustering and so this will be called as ‘K-means-like’ 
algorithm. In Step 1, we proposed a method of choosing the initial medoids. The performance of the 
algorithm may vary according to the method of selecting the initial medoids. The followings may be 
other possibilities of choosing the initial medoids, whose performance will be compared with each 
other in our simulation study in Section 3. 

 
Method 1. Random selection 
Select objects randomly from all objects.  k

 
Method 2. Systematic selection 
Sort all objects in the order of values of the chosen variable (first variable will be used in this study). 
Divide the range of the above values into  equal intervals and select one object randomly from 

each  interval.  

k

 
Method 3. Sampling 
Take 10% random sampling from all objects and perform a preliminary clustering phase on these 
sampled objects using the proposed algorithm. The clustering result is used as the initial medoids. 

 
Method 4. Outmost objects 
Select objects which are furthest from the center.  k

 
Method 5. Gaussian mixture 
Assuming that the objects are derived from  Gaussian components, estimate each mean vector of 

 Gaussian models through Expectation-Maximization (EM) algorithm (Vlassis and Likas, 2002) 

and find the closest object to the estimated mean vector. 

k

k

 
 

3. Numerical experiments 
 

3.1 Artificial data  
 
In order to evaluate the performance of the proposed method, some artificial data will be generated 
and clustered by using the proposed method, K-means clustering and PAM. 

 



We generate 120 objects having 2 variables for each of three classes shown in Fig. 1. We call the first 
group marked by square as class A, the second group marked by circle as class B and third group 
marked by triangle as class C for the sake of convenience.  

 

 
Figure 1 Artificial Data for Comparison  

 
Data is generated from multivariate normal distribution, whose mean vector and variance of each 
variable (variance of each variable is assumed to be equal and covariance is zero) are given in Table 1. 
In order to compare the performance when some outliers are present among objects, we add outliers to 
the class B. The outliers are generated from a multivariate normal distribution which has the equal 
mean with class B but larger variance as shown in Table 1.  

 
Table 1. Mean and variance when generating objects 

 

 Class A Class B Class C 
Outliers 

(Class B) 

Mean vector )0,0(  )2,6(  )1,6( −  )2,6(  

Variance of each 
variable 

25.1  25.0  25.0  22  

 

 
We compare the performance of the proposed method with K-means clustering and PAM. The adjusted 
Rand index will be used as the performance measure, which proposed by Hubert and Arabie (1985) 
and is popularly used for comparison of clustering results. The adjusted Rand index is calculated as  
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where 
a = number of pairs which are in the identical cluster of compared clustering solution for pairs of 



objects in certain cluster of correct clustering solution 
b = number of pairs which are not in the identical cluster of compared clustering solution for pairs of 
objects in certain cluster of correct clustering solution 
c = number of pairs which are not in the identical cluster of correct clustering solution for pairs of 
objects in certain cluster of compared clustering solution  
d = number of pairs which are not in the identical cluster of both correct clustering solution and 
compared clustering solution. 
 
Performance of each method in terms of the adjusted Rand index is reported in Table 2. Here, 
outlier % means the proportion of outliers (in class B) among 120 objects. For example, when the 
outliers % is 10, 108 objects plus 12 outlier objects belonging class B will be generated while 120 
objects for each of class A and class C will be generated. The result in Table 2 is actually the average 
adjusted Rand index from 100 repetitions. 

 
Table 2. Adjusted Rand indices by various clustering methods 

 

outliers % K-means PAM Proposed method 

0 % 0.7903 0.9679 0.9629 

5 % 0.8376 0.9534 0.9335 

10 % 0.7836 0.9430 0.9430 

15 % 0.7957 0.9288 0.9189 

20 % 0.7305 0.9150 0.9115 

25 % 0.7708 0.9053 0.8904 

30 % 0.7750 0.8952 0.8915 

35 % 0.7595 0.8782 0.8609 

40 % 0.7624 0.8667 0.8671 

 
From Table 2, it can be clearly seen that PAM and the proposed method perform much better than K-
means clustering. The performance of the proposed method and PAM is very similar to each other, 
although it seems to be degraded as the proportion of outliers increase.  
 
Fig. 2 shows the one of the simulation results. Instead of partitioning class B and C, K-means 
clustering divide class A into two groups. This may be caused by K-means clustering’s weakness, 
which is sensitive to outliers.  

 



 

(a) 

 

(b)                                      (c) 
Figure 2 (a) True cluster solution  (b) Cluster result from K-means 

 (c) Cluster result from PAM and the proposed method 
 
To compare the proposed method with PAM, we calculated the computation time with the artificial 
data sets. Fig. 3 shows how the computation time of each method increases as the number of objects 
increases. It is seen that PAM requires increasing computation time according to the number of objects, 
whereas the proposed method takes about the constant time.  

 

 
Figure 3 Time comparison of the proposed method with PAM 



 

In fact, the complexity of PAM is  but that of the proposed method is  which is 
equivalent to K-means clustering (Ng and Han, 1994). So, we may conclude that the proposed method 
is more efficient than PAM.  
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3.2 Performance comparison of several methods for selecting initial medoids  
 
To compare several methods for selecting initial medoids listed in Section 2, data set is generated by 
the same way as before with 10% outliers. Table 3 summarizes the results, where the adjusted Rand 
indices were reported in (a), the computation time were in (b), the distance from medoids to all other 
objects in each cluster were in (c), and the number of iterations according to the increased number of 
objects were in (d). Here again, the result is the average of 100 times of repetitions. 

 
Table 3. (a) Adjusted Rand index 

n Proposed Method1 Method2 Method3 Method4 Method5 

300 0.93927 0.8456 0.68002 0.91237 0.71532 0.94416 

600 0.92889 0.82134 0.6562 0.93896 0.78439 0.94455 

900 0.92832 0.81601 0.65237 0.92356 0.70749 0.94448 

1200 0.93135 0.84926 0.63543 0.92593 0.76650 0.94231 

1500 0.92939 0.81001 0.63680 0.92376 0.75256 0.94491 

1800 0.93771 0.83955 0.63531 0.93278 0.77791 0.94310 

2100 0.92736 0.79899 0.59487 0.91689 0.72579 0.94308 

2400 0.93755 0.82880 0.67166 0.92734 0.74584 0.94275 

2700 0.93284 0.78849 0.65120 0.94318 0.73119 0.94342 

3000 0.92201 0.80911 0.65068 0.9322 0.71507 0.94273 

 
(b) Computation time (in seconds) 

n Proposed Method1 Method2 Method3 Method4 Method5 

300 0.088 0.082 0.082 0.078 0.090 0.490 

600 0.278 0.264 0.264 0.235 0.280 0.835 

900 0.584 0.551 0.564 0.503 0.595 1.290 

1200 1.052 0.969 0.993 0.897 1.030 1.921 

1500 1.609 1.475 1.566 1.383 1.574 2.596 

1800 2.273 2.109 2.226 1.990 2.247 3.424 

2100 3.231 3.061 3.091 2.791 3.194 4.487 

2400 4.753 4.201 4.391 3.942 4.410 5.848 

2700 5.499 5.167 5.356 4.813 5.472 6.942 

3000 6.901 6.474 6.778 6.070 6.912 8.380 

 



(c) Distance from medoids to all objects 
n Proposed Method1 Method2 Method3 Method4 Method5 

300 326.9 356.0 403.8 336.6 393.6 325.3 

600 662.9 723.1 822.4 652.5 744.6 649.5 

900 993.0 1088.0 1233.8 990.6 1181.5 971.8 

1200 1321.3 1409.5 1666.9 1327.0 1506.1 1300.0 

1500 1651.6 1839.3 2087.9 1670.7 1909.6 1628.8 

1800 1956.0 2145.7 2498.0 1964.9 2239.6 1947.1 

2100 2306.2 2572.8 3003.9 2344.3 2721.7 2274.1 

2400 2609.6 2922.9 3246.8 2634.4 3063.0 2597.3 

2700 2952.0 3338.0 3715.1 2924.5 3489.7 2924.5 

3000 3312.2 3646.5 4124.5 3280.7 3923.4 3250.1 

 
(d) Number of iterations 

n Proposed Method1 Method2 Method3 Method4 Method5 

300 3.66 3.63 3.66 2.55 4.42 2.07 

600 3.61 3.87 3.98 2.21 4.70 2.13 

900 3.84 4.09 4.31 2.25 5.17 2.16 

1200 3.91 3.95 4.36 2.30 5.01 2.13 

1500 4.10 3.89 4.92 2.33 5.06 2.21 

1800 3.94 4.10 4.99 2.47 5.22 2.24 

2100 4.19 4.78 4.80 2.38 5.42 2.32 

2400 4.09 4.33 5.30 2.47 5.47 2.35 

2700 3.91 4.37 5.32 2.42 5.75 2.29 

3000 4.00 4.34 5.34 2.35 5.86 2.34 

 
The adjusted Rand index by Method 5 (Gaussian mixture) is reported as the best in Table 3(a). It 
means that its clustering performance is better than others. However, it takes a little more time when 
estimating the means of the Gaussian mixture model. It is expected that the computational time by 
Method 5 rapidly increases as the number of clusters increases. But the proposed method is as good as 
Method 5 in clustering performance and runs faster than Method 5.  

 

3.3 Iris data 
 
We used ‘Iris’ data set in UCI repository (ftp://ftp.ics.uci.edu/pub/machine-learning-databases/) in 
order to see the performance of the proposed algorithm. This data set includes 150 objects (50 in each 
of three classes, ‘Setosa’, ‘Versicolor’, ‘Virginica’), each objects having 4 variables (‘sepal length’, 
‘sepal width’, ‘petal length’, and ‘petal width’).  
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Table 4 shows the confusion matrix by K-means clustering method, whereas Table 5 shows that by the 
proposed method. The accuracy by K-means is 88.7 percent, whereas the accuracy by the proposed 
method is 92 percent. This example also shows the performance dominance of the proposed method 
over K-means clustering. 

 
Table 4. Cluster result by K-means 

 Setosa (predicted) Versicolor (predicted) Virginica (predicted) 

Setosa 50 0 0 

Versicolor 0 47 14 

Virginica 0 3 36 

 
 

Table 5. Cluster result by the proposed method 

 Setosa (predicted) Versicolor (predicted) Virginica (predicted) 

Setosa 50 0 0 

Versicolor 0 41 3 

Virginica 0 9 47 

 
 

4. Conclusion  
 
In this paper, we propose a new algorithm for K-medoids clustering which runs like the K-means 
clustering. The algorithm has excellent feature that it requires the distance between every pairs of 
objects only once and uses this distance at every iterative step.  
 
The result from various simulations shows that the proposed method has better performance than K-
means clustering and it takes the less computation time than PAM.  
 
Also various methods for selecting initial medoids are presented and compared. Though the Gaussian 
mixture method is a little better in terms of clustering performance, its computation time is large. So, 
even the method of selecting initial medoids described in the proposed method is good enough to use 
when considering both the performance and the computation time. 
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